5.3 Gas laws

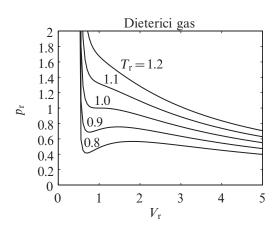
Ideal gas

acar gas			
Joule's law	U = U(T)	(5.55)	U internal energy T temperature
Boyle's law	$pV _T = \text{constant}$	(5.56)	p pressure V volume
Equation of state (Ideal gas law)	pV = nRT	(5.57)	n number of moles R molar gas constant
Adiabatic equations	$pV^{\gamma} = \text{constant}$ $TV^{(\gamma-1)} = \text{constant}$ $T^{\gamma}p^{(1-\gamma)} = \text{constant}$ $\Delta W = \frac{1}{\gamma - 1}(p_2V_2 - p_1V_1)$	(5.58) (5.59) (5.60) (5.61)	γ ratio of heat capacities (C_p/C_V) ΔW work done on system
Internal energy	$U = \frac{nRT}{\gamma - 1}$	(5.62)	
Reversible isothermal expansion	$\Delta Q = nRT \ln(V_2/V_1)$	(5.63)	ΔQ heat supplied to system 1,2 initial and final states
Joule expansion ^a	$\Delta S = nR \ln(V_2/V_1)$	(5.64)	ΔS change in entropy of the system

[&]quot;Since $\Delta Q = 0$ for a Joule expansion, ΔS is due entirely to irreversibility. Because entropy is a function of state it has the same value as for the reversible isothermal expansion, where $\Delta S = \Delta Q/T$.

Virial expansion

Virial expansion	$pV = RT\left(1 + \frac{B_2(T)}{V} + \frac{B_3(T)}{V^2} + \cdots\right)$	(5.65)	p V R T B _i	pressure volume molar gas constant temperature virial coefficients
Boyle temperature	$B_2(T_{\rm B})=0$	(5.66)	T_{B}	Boyle temperature


Van der Waals gas

Equation of state	$\left(p + \frac{a}{V_{\rm m}^2}\right)(V_{\rm m} - b) = RT$	(5.67)	p pressure $V_{\rm m}$ molar volume R molar gas constant T temperature a,b van der Waals' constants
Critical point	$T_{c} = 8a/(27Rb)$ $p_{c} = a/(27b^{2})$ $V_{mc} = 3b$	(5.68) (5.69) (5.70)	$T_{\rm c}$ critical temperature $p_{\rm c}$ critical pressure $V_{\rm mc}$ critical molar volume
Reduced equation of state	$\left(p_{\rm r} + \frac{3}{V_{\rm r}^2}\right) (3V_{\rm r} - 1) = 8T_{\rm r}$	(5.71)	$ p_{\rm r} = p/p_{\rm c} $ $ V_{\rm r} = V_{\rm m}/V_{\rm mc} $ $ T_{\rm r} = T/T_{\rm c} $

Dieterici gas

Equation of state	$p = \frac{RT}{V_{\rm m} - b'} \exp\left(\frac{-a'}{RTV_{\rm m}}\right)$	$(5.72) \begin{array}{c} V_{\rm m} & 1 \\ R & 1 \\ T & 1 \end{array}$	pressure molar volume molar gas constant temperature Dieterici's constants
Critical point	$T_{\rm c} = a'/(4Rb')$ $p_{\rm c} = a'/(4b'^2e^2)$ $V_{\rm mc} = 2b'$	(5.74) p _c	critical temperature critical pressure critical molar volume = 2.71828
Reduced equation of state	$p_{\rm r} = \frac{T_{\rm r}}{2V_{\rm r} - 1} \exp\left(2 - \frac{2}{V_{\rm r} T_{\rm r}}\right)$	(5.76) $\begin{array}{c c} p_{\rm r} & = \\ V_{\rm r} & = \\ T_{\rm r} & = \end{array}$	$= p/p_{c}$ $= V_{m}/V_{mc}$ $= T/T_{c}$

